Special Seminar: Diversity Challenges Facing Physics

Event information
Venue:CP197, MMC


The National Academies have suggested that increasing diversity in Science, Technology, Engineering, and Math will be critical to the future competitiveness of the US in these areas [1], and the leadership of both the National Science Foundation [2] and the American Physical Society is taking this seriously. Physics and Astronomy programs grant, on average, only one PhD every 5 and 10 years, respectively, to members of underrepresented groups [3]. We are therefore not surprisingly the least diverse of the sciences [4]. In this talk, I will discuss several opportunities that may help our community move toward meeting these goals, and, importantly, the potential benefits to programs and individual investigators willing to take on these challenges. The most universally applicable and easily implementable actions regard perturbing graduate admissions policies and practices [5], and employing key features of successful Bridge Programs into graduate programs [6].

[1] National Academy of Sciences, National Academy of Engineering, and Institute of Medicine, “Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads,” The National Acadamies Press (2011); http:/www.nap.eduopenbook.php?record_id=12984

[2] Joan Ferrini-Mundy, “Driven by Diversity,” Science 340, 278 (2013).

[3] Stassun, K.G., “Building Bridges to Diversity”, Mercury, 34, 3 (2005).

[4] http:/www.aps.orgprograms/education/statistics/minoritydegrees.cfm

[5] Casey W. Miller, “Admissions Criteria and Diversity in Graduate School,”APS News, The Back Page, February 2013. http:/www.aps.orgpublications/apsnews/201302/backpage.cfm

[6] Stassun, K.G., Sturm, S., Holley-Bockelmann, K., Burger, A., Ernst, D., & Webb, D., “The Fisk-Vanderbilt Masters-to-PhD Bridge Program: Broadening Participating of Underrepresented Minorities in the Physical Sciences. Recognizing, enlisting, and cultivating ‘unrealized or unrecognized potential’ in students”, American Journal of Physics 79, 374 (2011).


Casey W. Miller is presently Associate Professor of Physics at the University of South Florida in Tampa, where he studies nanoscale magnetism and related devices. He is Director of the new APS-Bridge Site at USF, as well as Associate Director of Physics Graduate Studies. He graduated summa cum laude from Wittenberg University in 1999 with University and Physics Departmental Honors and, where he was also elected to ΦΒΚ. He earned his PhD from the University of Texas at Austin in 2003, notably earning the Department’s Best Dissertation Award for work combining Magnetic Resonance Imaging with Scanning Probe Microscopy. He joined USF in 2007 after completing a post-doctoral fellowship at the University of California, San Diego, where he worked on spin-dependent tunneling.